A Width Parameter Useful for Chordal and Co-comparability Graphs
نویسندگان
چکیده
In 2013 Belmonte and Vatshelle used mim-width, a graph parameter bounded on interval graphs and permutation graphs that strictly generalizes clique-width, to explain existing algorithms for many domination-type problems, also known as (σ, ρ)problems or LC-VSVP problems, on many special graph classes. In this paper, we focus on chordal graphs and co-comparability graphs, that strictly contain interval graphs and permutation graphs respectively. First, we show that mim-width is unbounded on these classes, thereby settling an open problem from 2012. Then, we introduce two graphs Kt Kt and Kt St to restrict these graph classes, obtained from the disjoint union of two cliques of size t, and one clique of size t and one independent set of size t respectively, by adding a perfect matching. We prove that (Kt St)-free chordal graphs have mim-width at most t − 1, and (Kt Kt)-free co-comparability graphs have mim-width at most t− 1. From this, we obtain several algorithmic consequences, for instance, while Dominating Set is NP-complete on chordal graphs, like all LC-VSVP problems it can be solved in time O(n) on chordal graphs where t is the maximum among induced subgraphs Kt St in the given graph. We also show that classes restricted in this way have unbounded rank-width which validates our approach. In the second part, we generalize these results to bigger classes. We introduce a new width parameter sim-width, special induced matching-width, by making only a small change in the definition of mim-width. We prove that chordal and co-comparability graphs have sim-width at most 1. Since Dominating Set is NP-complete on chordal graphs, an XP algorithm parameterized only by sim-width would imply P=NP. Therefore, to apply the algorithms for domination-type problems mentioned above, we parameterize by both simwidth w and a further parameter t, which is the smallest value such that the input has no induced minor isomorphic to Kt St or Kt St. We show that such graphs have mim-width at most 8(w + 1)t and that the resulting algorithms for domination-type problems have runtime nO(wt 3), when the decomposition tree is given.
منابع مشابه
Sim-width and induced minors
We introduce a new graph width parameter, called special induced matching width, shortly sim-width, which does not increase when taking induced minors. For a vertex partition (A,B) of a graphG, this parameter is based on the maximum size of an induced matching {a1b1, . . . , ambm} in G where a1, . . . , am ∈ A and b1, . . . , bm ∈ B. Classes of graphs of bounded sim-width are much wider than cl...
متن کاملLower Bounds on the mim-width of Some Perfect Graph Classes
mim-width is a recent graph width measure that has seen applications in graph algorithms and problems related to propositional satisfiability. In this paper, we show linear lower bounds for the mim-width of strongly chordal split graphs, co-comparability graphs and circle graphs. This improves and refines lower bounds that were known before, some of them only conditionally. In the case of stron...
متن کاملNew representation results for planar graphs
A universal representation theorem is derived that shows any graph is the intersection graph of one chordal graph, a number of co-bipartite graphs, and one unit interval graph. Central to the the result is the notion of the clique cover width which is a generalization of the bandwidth parameter. Specifically, we show that any planar graph is the intersection graph of one chordal graph, four co-...
متن کاملReconfiguration of Colorable Sets in Classes of Perfect Graphs
A set of vertices in a graph is c-colorable if the subgraph induced by the set has a proper c-coloring. In this paper, we study the problem of finding a step-by-step transformation (reconfiguration) between two c-colorable sets in the same graph. This problem generalizes the well-studied Independent Set Reconfiguration problem. As the first step toward a systematic understanding of the complexi...
متن کاملBounding the Clique-Width of H-free Chordal Graphs
A graph is H-free if it has no induced subgraph isomorphic to H . Brandstädt, Engelfriet, Le and Lozin proved that the class of chordal graphs with independence number at most 3 has unbounded clique-width. Brandstädt, Le and Mosca erroneously claimed that the gem and the co-gem are the only two 1-vertex P4-extensions H for which the class of H-free chordal graphs has bounded clique-width. In fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 704 شماره
صفحات -
تاریخ انتشار 2017